Odbiorniki domowe i przemysłowe posiadają coraz więcej obwodów elektrycznych zasilanych prądem, którego przebieg nie jest czysto sinusoidalny. Na przykład, w silnikach stosowana jest coraz częściej regulacja częstotliwości, która wymaga przejścia z prądu przemiennego (AC) na prąd stały (DC), a następnie z prądu stałego na prąd przemienny. Ze względu na to, że dostarczany prąd jest zazwyczaj prądem przemiennym, coraz powszechniej wykorzystywane są konwertery elektroniczne (prostowniki, falowniki itd.) do przetwarzania DC-AC i AC-DC. Podobnie dzieje się z powszechnie używanymi odbiornikami jak komputery, lampy ledowe i wyładowcze, windy...
Z punktu widzenia sieci elektrycznej, przekłada się to na konieczność zasilania dużej liczby odbiorników, co powoduje prostowanie amplitudy prądu. W konsekwencji kształt fali pobieranego prądu zmienia się w taki sposób, że nie mamy już do czynienia z falą sinusoidalną, lecz nałożonymi na siebie falami sinusoidalnymi o częstotliwościach stanowiących wielokrotność częstotliwości sieciowej (harmoniczne). Rysunki 1 i 2 pokazują typowy pobór dla sieci z prostownikami jednofazowymi oraz dla sieci z prostownikami trójfazowymi. Ten typ prądów jest najczęściej spotykany w takich obiektach jak biura, centra handlowe, szpitale itd., i zawiera składową o wartości 50 lub 60Hz (podstawowa częstotliwość sieciowa) oraz serię składowych o częstotliwościach stanowiących wielokrotność tej wartości w różnych zawartościach procentowych. Te zawartości procentowe można mierzyć za pomocą analizatora harmonicznych, a także współczynnika zawartości harmonicznych - THD, który odzwierciedla stosunek między wartością skuteczną tętnienia oraz wartością skuteczną składowej podstawowej.
Skutkiem poboru prądu niesinusoidalnego jest również pewne odkształcenie napięcia wywołane spadkami napięcia w impedancjach przewodów i przekładników. W rejestrach można zauważyć lekkie odkształcenie napięcia w sieci jednofazowej (niski THD) oraz silniejsze odkształcenie w przykładzie sieci trójfazowej. W obu przypadkach przebieg prądu wyraźnie różni się od sinusoidy oraz posiada wyższe wartości THD. W celu rozwiązania tego problemu oraz ograniczenia poziomów odkształcenia napięcia w punktach podłączenia odbiorców do sieci publicznej, istnieje szereg norm międzynarodowych, które ustalają dopuszczalne poziomy emisji harmonicznych dla urządzeń i systemów podłączanych do sieci. Jak podano w Tabeli 1, najważniejsze spośród nich to normy dotyczące poziomów kompatybilności: |
Aby lepiej zrozumieć problematykę harmonicznych, będziemy opierać się na kilku podstawowych pojęciach opisanych w wielu książkach i artykułach, a które streszczamy poniżej:
Podsumowując, rozwiązanie problemu harmonicznych jest rozwiązaniem o dwojakim charakterze: Z jednej strony, użytkownik powinien ograniczyć ilość prądów harmonicznych generowanych przez własne odbiorniki oraz powinien starać się zapewnić dystrybucję energii w swojej instalacji przy niskiej impedancji na metr przewodu. Z drugiej strony, dystrybutor energii elektrycznej powinien zapewnić minimalną wartość mocy zwarciowej i powinien dbać, aby użytkownicy nie przekraczali pewnych dopuszczalnych poziomów odkształcenia, by nie zaszkodzić swoim sąsiadom, z którymi współdzielą sieć.
Gdy poziomy harmonicznych wygenerowanych przez niektóre odbiorniki są niedopuszczalne dla zasilającego je systemu dystrybucji, należy zastosować filtry korekcyjne. W tym artykule skoncentrujemy się i rozwiniemy temat filtrowania.
Ograniczenia kompatybilności z powodu harmonicznychWystępowanie harmonicznych w sieci niesie ze sobą różne skutki. Najbardziej newralgiczne z nich wymieniono poniżej.
Aby uniknąć tych problemów, normy określają minimalną jakość zasilania, którą ustala się poprzez ograniczenie maksymalnych poziomów odkształcenia w fali napięcia dostarczanej do punktu przyłączenia do sieci publicznej. Te ograniczenia nazywane są granicami kompatybilności. Tabela 1 zawiera w skróconej formie wspomniane poziomy dopuszczalne w odniesieniu do harmonicznych w niskonapięciowych sieciach przemysłowych. Poszczególne klasy wymienione w tabeli dotyczą odpowiednio:
|
Harmoniczne napięcia są powodowane przez spadek napięcia, który wywołują harmoniczne prądu na impedancjach sieci dystrybucji. Fakt ten został przedstawiony na Rys. 2. Zatem osiągnięcie tych granic zależy od dwóch czynników:
W tabeli 3 podano wartości graniczne emisji w sieciach niskonapięciowych, ustalone przez normę EN-IEC-61000-3-4 dla przyłączy, w których moc zastosowana w elementach zakłócających nie przekracza wartości (33xScc), gdzie Scc oznacza moc zwarciową odpowiadającą danemu przyłączu (proporcjonalna część całkowitej mocy zwarciowej, która odpowiada mocy zakontraktowanej).
Niektóre z wcześniej sygnalizowanych problemów dotyczących zakłóceń mogą zostać złagodzone i skorygowane za pomocą filtrów. Filtry aktywne stanowią idealne rozwiązanie dla instalacji zawierających dużą ilość odbiorników jednofazowych i trójfazowych, generujących harmoniczne i charakteryzujących się różnymi sposobami poboru energii.
Filtry aktywne to urządzenia oparte na konwerterach z modulacją szerokości impulsu PWM. Dostępne są dwa rodzaje filtrów: filtry szeregowe i filtry równoległe. Zazwyczaj, w celu spełnienia norm IEC-61000-3.4 i IEEE-519, stosowane są filtry równoległe, które działają na zasadzie przesyłu do sieci harmonicznych pobranych przez odbiornik, w przeciwfazie, przy użyciu falownika. Rys.3 obrazuje tę zasadę działania, pokazując prąd odbiornika, filtra i sieciowy. Widać, że sumując IODBIORNIK + IFILTR uzyskuje się prąd ISIEĆ, który jest sinusoidalny.
W urządzeniach do filtrowania stopniowo dodawane są funkcje uzupełniające w celu dostosowania ich do modyfikacji w instalacjach elektrycznych, które ze względu na poszerzenie lub zmiany sprzętu mogą wymagać zwiększonego filtrowania określonych harmonicznych lub zrównoważenia między fazami. Przydatna jest też często opcja kompensacji energii biernej w tych urządzeniach. | "Prosta interakcja |
Jako rozwiązanie wyżej opisanych problemów, CIRCUTOR oferuje nowy filtr aktywny AFQevo. Jego nowa konstrukcja zapewnia następujące korzyści:
Znaczenie właściwego wyboruAby uzyskać optymalne wyniki, należy posiadać filtry takie jak AFQevo o prostym sposobie instalacji i zarządzania. Oto funkcje, które najbardziej ułatwiają obsługę urządzenia:
| "Pomagają one lepiej |
Aktywne filtry są AFQevo bardzo wszechstronny, pozwalając różne konfiguracje i tryby Operacja. Wszystko dla zapisać je w obiektach różnych typów i najbardziej różnych sytuacjach.
Harmoniczne w sieciach dystrybucji energii elektrycznej są coraz częstszym zjawiskiem, powodując szereg problemów związanych z obniżeniem jakości fali napięciowej, konieczność przewymiarowania instalacji, a także generując znaczne straty dodatkowe. Oprócz przestrzegania norm ograniczających pobór harmonicznych, zaleca się filtrowanie wspomnianych harmonicznych, gdyż dzięki temu można zoptymalizować przekroje kabli, moc przekładników dystrybucyjnych oraz zmniejszyć straty w instalacjach i uniknąć strat w produkcji.
Rozwiązaniem tego problemu jest globalne i racjonalne wykorzystanie filtrów harmonicznych jak filtry aktywne, które stanowią idealny środek zaradczy niewymagający wysokich nakładów finansowych. Koszty filtrów można łatwo zamortyzować dzięki oszczędnościom osiągniętym w wyniku wyeliminowania strat, przedłużeniu żywotności niektórych podzespołów instalacji oraz optymalizacji infrastruktury dystrybucji energii elektrycznej (kable, kanały kablowe, przekładniki itd.).
Kontakt: |
Możesz czytać najnowsze informacje w dziale wiadomości
Możesz również śledzić nasze publikacje na kanałach CIRCUTOR Twitter oraz LinkedIn.
ESCRIT PER CIRCUTOR