

LRZ 04-010

LRZ 04-010, Reactor

DESCATALOGADO

Description

The motor speed regulation equipment, frequency variators, UPS units, etc. generate alterations in the network, which affect other loads in the installation of the operation of the equipment.

The LRZ / LRBZ reactors connected to the input on the network side of the equipment can attenuate voltage peaks and reduce the harmonic distortion generated by the power electronics. The LRZ / LRBZ Reactors for filtering can reduce the current harmonics in any converter from 40... 50 % to values around 20 %. In addition, they reduce the shortcircuit current and increase the safety of the converter's semi-conductors. When installed on the motor side, they can attenuate harmonic frequencies caused during switching operations.

- Low-powered reactors, LRZ type, are built with plates with low losses and are coiled with copper wire. The connection is achieved with the adequate terminals.
- In the case of higher currents, LRBZ reactors are used, with a magnetic plate nucleus and multiple steel cores, which offer excellent characteristics and a low loss ratio. Copper band coils (or aluminium band, on demand). The connections run through a plate.
- Both LRZ and LRBZ type reactors have a vacuum varnish sealing to increase the insulation, providing a greater mechanical resistance and reduce the level of noise.

Application

The reactors of the LR / LRB series are prepared and can be used on the network and motor sides. They attenuate micro-drops and peaks during the initial connection and switching operations, and they reduce the rate of harmonics from the network current.

Circutor

LRZ 04-010

Reactors for filtering for power converters (network side)

Code: P73305.

Specifications

Size (mm) width x height x depth	120 x 125 x 70 (mm)
Envelope	Conductor type: copper wire
Weight (kg)	2,2
nvironmental characteristics	
Thermal Class	"class F (+155 °C) On request: class H (+180 °C)"
Protection class	IP 00
lectrical characteristics	
Linearity (5% L)	1,5 In
Maximum transient current	2 In (1 min)
Voltage	up to 1000 V~
L value (mH)	3.2
Insulation voltage, circuit	4 kV
urrent measurement circuit	
Nominal current (In)	According to table. Other values on request
Allowable overload	1,7 In
Permanent overload	1,7 In
tandards	
	UNE-EN 60289 , IEC 60076

LRZ / LRBZ

Filter reactors for power converters (network side), 50 Hz

CODE	ТҮРЕ
P7330B.	LRZ 04-050
P7330D.	LRZ 04-066
P7330E.	LRBZ 04-080
P7330G.	LRBZ 04-115
P7330J.	LRBZ 04-185
P7330K.	LRBZ 04-200
P7330M.	LRBZ 04-300

LRZ 04-010

Reactors for filtering for power converters (network side) Code: P73305.

Dimensions

×

